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Abstract 

The main theme of this research is the application of high order accurate 
schemes to complicated flow problems. The advantage of using high order 
schemes for long time simulations is widely recognized by now. For prob- 
lems where fine details of the flow field have to be captured accurately the 
use of high accuracy schemes is mandatory. These two classes of problems 
encompass many of the current problems in scientific computing. 

High order accuracy methods, finite difference , finite elements or spectral 
methods pose many algorithmic problems. They have less numerical dissi- 
pation and therefore they are less robust. In particular when the flow to be 
simulated includes a shock wave, special treatment has to be given. The fa- 
mous Gibbs phenomenon seems to imply that the presence of the shock wave 
prohibits the possibility of applying spectral methods for problems with dis- 
continuous solutions. We have shown that this is the wrong interpretation of 
the Gibbs phenomenon and applied the resolution of this phenomenon in this 
research effort. Thus in this research we present the development and appli- 
cation of spectral shock capturing techniques as well as ENO finite difference 
and finite element methods for realistic problems. 

For genuinely time dependent problems special care has to be taken in 
order to preserve the accuracy. Small errors that do not show up in steady 
state calculations can be amplified and ruin the total accuracy. Time de- 
pendent boundary conditions may pose problems. We have addressed those 

issues in our current efforts. 
The recent advent of parallel computers poses a special challenge to the 

users of high order methods. Issues in parallel computing for the simulations 
of incompressibly and compressible flows had been treated. 



The algorithmic developments took place in parallel to the applications. 
We concentrated on three main applications: Fuel air mixing enhanced by 
shock induced vortices, Shock vortex interactions and flow past a blunt body. 

This report will be divided into the following parts 

1. Spectral shock capturing techniques, (p. 3-4) 

2. High order ENO finite difference schemes for shock calculations, 

(p. 5-6) 

3. Parallel computing for high order schemes (p. 7-10) 

(a) Spectral Element methods for incompressible flows. 

(b) Spectral methods for compressible flows 

(c) ENO schemes 

4. Fuel air mixing enhanced by shock induced vortices, (p. 11-12) 

5. Shocks interacting with vortices (p. 13) 

6. Compressible wake flows (p. 14-15) 

7. The efficient implementation of Spectral and high order schemes, 
(p. 16) 

8. Multiscale computing (p. 17) 

9. List of publications resulting (and acknowledging) this grant,  (p 

I-IV) 

Appendix A describes the shock capturing codes applied and their imple- 
mentation, using vector and parallel computers. 
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1. Spectral shock capturing techniques 

The problem in applying spectral methods to shock wave problems is their 
sensitivity to discontinuities. The presence of shock wave creates theoretical 
as well as practical difficulties. 

Two major theoretical breakthroughs that occured in the last period, 
may clear the way to the successful implementation of spectral methods in 
simulating complicated shock waves interactions. 

The first development involved the solution of the Gibbs phenomenon. 
The Gibbs phenomenon is related to the well known fact that the rate of 
convergence of the sequence of partial sums of the Fourier series representa- 
tion of a function deteriorates rapidly when the function has discontinuities. 
In essence the new result says that the first N Fourier coefficients of a piece- 
wise analytic function (a finite number of bounded jump discontinuities is 
permitted) carries much more information than can be revealed by forming 
the iV th order Fourier partial sum. In fact it has been shown that these iV 
coefficients contain enough information so that one can constructively form 
an approximation to the unknown piecewise analytic function which is expo- 
nentially accurate in N. This result had been extended too any polynomial 
method, such as the commonly used Chebyshev method. 

The second development concerns the convergence of spectral methods 
for non-linear hyperbolic equations. It has been shown that with a suitable 
addition of (spectrally amah1) artificial dissipation the method converges. 
Moreover it has been shown that the usual filtering technique can be cast in 
terms of the above analized artficial dissipation. 

While the above results create a breakthrough that indicate that high 
order methods are useful for shock wave calculations, a lot of work has still 
to be done in making the process efficient. Stabilizing the scheme in an 
optimal way, and extracting the information in an efficient way have to be 
further studied. 

In a series of papers ([25] - [28]) , we have addressed the issue of the Gibbs 
Phenomenon. In an earlier paper we have shown that an exponentially con- 
vergent approximation in the maximum norm can be reconstructed from the 
first N Fourier coefficients of a piecewise analytic function. In [25] we dis- 
cussed resolution properties of this approximation. In [26] we have extended 



the proof to the case of many discontinuities and to the case that the Legen- 
dre expansion coefficients are given. In [27] we discussed the case in which 
we know the first N Gegenbauer expansion coefficients of a piecewise analytic 
function. In [28] we discusses the situation in which we have a good approx- 
imation to the interpolation polynomial (or trigonometrical polynomial) of a 
piecewise smooth function. 

In [39] It has been shown that when the spectral method is applied (with 
the appropriate smoothing) to a scalar conservation law the numerical solu- 
tion indeed converges to the entropy solution. This result was confirmed in 
[40] where we have applied the techniques developed above to extract expo- 
nentially accurate information from spectral discretization of the nonlinear 
Burgers equation. 



2. High order ENO schemes 

We have been continuing our investigation of ENO schemes using point- 
flux and TVD Runge-Kutta time discretization formulations in the following 

directions: 
(1) Towards the convergence issues, we have investigated entropy consis- 

tency for high order Hermite type finite difference and discontinuous Galerkin 
methods as a first step. We have been able to obtain [5] a cell entropy in- 
equality for the square entropy, for such high order schemes (no restriction 
on order of accuracy) without resorting to the help of nonlinear limiters. The 
result is valid for multi space dimensions with arbitrary triangulations and 
for any fluxes (no restriction on convexity). This is a significant improve- 
ment in obtaining cell entropy inequalities since all the previous work in this 
direction must either resort to modifications to existing limiters or resort to 
complicated global analysis, and be restricted to second order accuracy. We 
plan to continue the investigation towards full convergence proofs; 

(2) Application of ENO schemes to combustion problems. The first test 
case is shock interaction with hydrogen bubbles. Different configuration of 
bubbles is studied to see the effect of shock interaction. High order accuracy is 
crucial in this problem due to the detailed structures of the solution behind 
the shock. This project is on going. Stiff source terms must be treated 
adequately for future tests; 

(3) Comparison of two different formulation of ENO schemes: finite vol- 
ume vs finite difference. The comparison is performed on problems related 
to curved boundary, inflow outflow boundary conditions, shocks oblique to 
the grids, and CPU time. It is found out that finite difference version of 
ENO scheme (the one based on point values and numerical fluxes of Shu and 
Osher) is much cheaper to run, and can obtain results comparable to finite 
volume ENO in most of the test cases. 

(4) ENO schemes based on rational function building blocks are being 
investigated. As a first step we are investigating approximation results. The 
potential here is that in most rapid transition regions, rational functions ap- 
proximate the true solution better than polynomials. This project is on going. 
In [8] , we have performed an extensive comparison of the two formulations of 
ENO schemes: the cell-averaged version first developed by Harten, Engquist, 
Osher and Chakravarthy, and the point value version first developed by Shu 
and Osher.   The results indicate that for most test cases, the two formula- 



tions of ENO schemes yields the same accuracy whereas the point value ENO 
scheme is much faster In [38], we have studied positivity preserving finite vol- 
ume schemes in one and two space dimensions for arbitrary triangulations. 
The equations we solve are Euler equations of compressible gas, and positiv- 
ity is preserved for density and pressure. A general framework and examples 
are provided in this paper. In [41], we have applied the ENO scheme to 
the equations of viscoelasticity with exponential fading memory. Analytical 
results about the linearized equation for large time are obtained, and com- 
pared with the numerical results. Also, nonlinear simulations for both short 
time and long time are performed. The numerical method is stable and pro- 
duces very good shock resolution for long time. In [34] we have proved that 
the high order discontinuous Galerkin method, using approximate Riemann 
solvers satisfies a cell entropy inequality for the square entropy, for arbitrary 
order of accuracy and for arbitrary triangulations in multi space dimensions, 
with or without using the nonlinear limiters. This compares sharply with 
similar results for finite difference which can be proven only for much more 
restricted cases: convex, one dimension, and only for special second order 
schemes. Related stability issues and numerical aspects are also discussed in 

[35]. 



3. Parallel computing for high order schemes 

(a) Spectral Elements for incompressible flows 

The research objective here is to develop parallel algorithms for compu- 
tational fluid dynamics (CFD) which will permit solution of incompressible 
flows with the accuracy and resolution demanded by large eddy simulations 
(LES) of turbulent flows in complex geometries. The work is subdivided into 
three principal areas: high-order flexible discretizations, fast multi-level it- 
erative solvers, and implementation of LES modeling technology. All of this 
work is being developed within the computational framework of distributed 
memory architectures which provide a favorable price/performance ratio for 
this class of problems. 

Our numerical approach is based upon the spectral element method, 
which retains many of the essential features of global spectral discretizations, 
namely, rapid (exponential) convergence, minimal numerical dissipation and 
dispersion per degree-of-freedom, and efficient tensor product factorization 
of spatial derivative operators. The computational domain is subdivided 
into large macro-elements and the solution, data, and geometry within each 
element are expressed in terms of high-order polynomials. The use of a 
weighted-residual procedure permits a reduction in inter-element continuity 
requirements from C1 to C°, which in turn leads to a reduction in inter- 
processor communication. The locally-structured/globally-unstructured, ap- 
proach of the spectral element discretization is ideally suited to the two-level 
memory hierarchy associated with distributed memory parallel computers. 

The performance of general geometry incompressible codes is largely tied 
to the speed of the elliptic solver for the pressure; development of fast multi- 
level iterative solvers is a major focus of our current efforts. Presently, we 
employ a two-level conjugate gradient based solver which uses deflation to 
project out the coarse grid modes, thereby reducing the condition number of 
the underlying iteration matrix. The system is preconditioned by local finite- 
element based operators which are significantly less expensive to invert than 
their high-order counterparts. In effect, one can obtain high-order accuracy 
at low-order cost. We have addressed all of the parallel issues associated 
with this approach, including the use of an efficient parallel coarse-grid solve, 



and are able to compute Navier-Stokes solutions at a resolution of 3 million 
gridpoints on the 512 node Intel Delta at the rate of 4 minutes per time step 
(6.5 GFLOPS). To improve upon this result, we are currently developing a 
preconditioner based upon a Schur-complement formulation for the interface 
variables. This approach leads not only to better conditioning, but also 
to reduced degrees-of-freedom, which in turn permits the use of projection 
techniques in which very good initial guesses can be generated by projecting 
the residual onto results from previous time steps. 

Accurate numerical simulation of many high Reynolds number engineer- 
ing flows will continue to be limited by resolution requirements for the fore- 
seeable future. However, progress is being made to the point where the 
combination of high-resolution ( > 106 gridpoints ) and advanced large-eddy 
simulation (LES) models will be able to conquer many important problems 
in the near future. Our goal is to couple the latest LES technology developed 
within the turbulence community with a general geometry Navier-Stokes code 
capable of solving these demanding problems. 

Because of the large number of degrees-of-freedom involved, effective use 
of high-performance distributed memory parallel architectures is essential 
to economic resolution of these problems. Principal parallel issues to be 
addressed include: development of coarse-grid solve strategies which will 
remain competitive as the number of processors and dimension of the coarse- 
grid system continue to increase; and development of optimal communication 
strategies for the complex subdomain interfaces arising from nonconforming 
discretizations. 

(b) Spectral methods for compressible flows. 

Spectral methods involve the approximation of the unknown solution in 
terms of global polynomials. This fact make them difficult to implement on 
parallel computers. A popular method to overcome the limitations of spectral 
methods is to use multidomain techniques, in which a complex domain is 
decomposed into several simpler subdomains. This method has been applied 
successfully to incompressible flows (the Specral-Element technique) or to 
problems in structural mechanics (the h-p method). 

Multidomain spectral methods are suitable for coarse grain parallel com- 
puting, each domain is assigned to a different processor. 



The main question is: Are multidomain methods efficient? This question 
has not been yet answered for those methods applied to hyperbolic equations. 
If we denote by W(p, N) the work involved in approximating k waves using 
p sub domains (and N points in each domain) to obtain an error of at most 
e~e, then W(p, N) is minimized if 

P   ~    — I1) e 

Thus the optimal number of subdomain increases with the complexity of 
the problem (or number of waves) but decreases if the required accuracy 
increases. This result may serve as a guideline to the optimal number of sub- 
domain. The formula above can be suitably modified for parallel computers. 

A key issue in the application of multidomain spectral methods to the 
numerical solution of hyperbolic equations is the interface boundary condi- 
tions. This leads to the question of the imposition of boundary conditions, 
both analytic and numerical, in the numerical solutions of systems of hyper- 
bolic equations. For truly time dependent problems stability in the classical 
sense (Lax and G-K-S stability) is not enough. Even stable schemes may 
exhibit a non-physical growth in time. From a practical point of view, in 
order to achieve reasonable accuracy for large time, meshes much too fine for 
the computers available in the foreseeable future are required. In the past 
methods that preserve summation-by-parts property of the differential equa- 
tion were constructed. Recent attempts to utilize these boundary closures 
to numerically solve a 2 x 2 hyperbolic system have shown that, in certain 
cases, an unwarranted growth in time still results. 

In [23], [7] we have outlined a systematic procedure for designing time- 
stable, as well as G-K-S stable schemes of high-order accuracy. The new 
schemes are guaranteed to be time-stable for any hyperbolic system (as long 
as the system has a bounded energy). We have extended this methodology 
to Navier Stokes equations in three space dimensions. We have showed that 
the SAT boundary condition assures the correct behavior as the Reynolds 
number tends to infinity. 

We have carried out ([31], [30]) experiments with the new boundary pro- 
cedure indicate that there are very suitable for parallel computing. Indeed 
if one assigns each domain to a different processor then the work can be 
done completely in parallel. The communication issue is related directly to 
the interface boundary conditions.   With the SAT procedure it seems that 
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communication time may be reduced. This will be one of the 
We also a examined a method to approximate the interface conditions for 

Chebyshev polynomial approximations to the solutions of parabolic prob- 
lems, and a smoothing technique is used to calculate the interface conditions 
for a domain decomposition method. The method uses a polynomial of one 
less degree than the full approximation to calculate the first derivative so 
that interface values can be calculated by using only the adjacent subdo- 
mains. Theoretical results are given for the consistency of the scheme and 
practical results are presented. Computational results are given for a fourth 
order Runge-Kutta method in two dimensions and for an explicit/explicit 
scheme in both one and two dimensions. 

(c) Parallel implementation of ENO schemes on CM-5 

The main cost in ENO schemes is in its logic step in choosing local stencils 
by comparing divided difference tables of the function. Although great effort 
has been spent on efficiently vectorizing this part for CRAY supercomputers, 
due to the inevitable gathering-scattering process, ENO schemes still do not 
run very fast on CRAY computers. Recently we have been exploring the 
structure of the ENO algorithm to suit the parallel structure of CM-5. The 
algorithm has been slightly re-formulated (in a mathematically equivalent 
way) to reduce communications and to eliminate communications between 
other than next neighbors, at the price of a slightly increased operation 
count. Our CM-5 two dimensional ENO code for compressible Euler and 
Navier-Stokes equations is a magnitude faster than our ENO code on CRAY 
for a 400x400 grid. Three dimensional code also shows a speed up, although it 
has not been optimized yet (for three dimensions, storage is a big restriction, 
and the structure of the program must be modified accordingly). Currently 
we are trying to improve the CM-5 code and applying it to reactive flows. 
This research is reviewed in [19], see also Appendix A. 

10 



4. Fuel air mixing enhanced by shock induced vortices 

In designing supersonic combuster for the next generation of supersonic 
transport, we look for an efficient combuster such that : 

• allow better load to weight ratio by carrying less fuel, 

• reduce chemical product that contribute to pollution due to incomplete 
burning of fuel. 

One of the technique currently under study in enhancing mixing of a hy- 
drogen jet (fuel) and air (oxidizer) is to allow the existing shock inside the 
combustion chamber to interact with the hydrogen jet . By doing so, vorticity 
are generated according to the vorticity equation of the Navier Stokes equa- 
tion, The pressure gradient of the shock and the density gradient between 
the air and hydrogen provides an efficient mechanism for vorticity genera- 
tion along the surface of the hydrogen jet. The vorticity forced the jet to 
curl up and stressed. The increased surface area allows greater mixing of air 
and hydrogen where combustion can take place. Even though the problem is 
three dimensional steady state, it had been argued that the three dimensional 
steady flow can be directly associated with a corresponding two dimensional 
unsteady calculation in this particular physical setting. 

Numerical simulations are a necessary part of this investigation. For these 
type of problem, it is important to capture the complex physics with high 
accuracy. Finite difference scheme , with their inherent dissipative nature for 
stability reason, can only yields a quantitative result of the flow fields. Often, 
for long time integration, the loss of accuracy in the earlier stage affect the 
development of the flow in later time. 

In Appendix A we describe two codes for simulating the above problem. 
A spectral shock capturing code and a finite difference ENO code. We have 
employed all the theoretical techniques developed in order to run succesfully 
the codes. 

we computed the solution of these problem with various configuration of 
multiple jets placement. Our preliminary results found that different ini- 
tial placement of the jets yields distinct final configurations (Moreover, the 
spectral code is fully capable of capturing the fine scale structure of the in- 
teractions, including some that had not been seen in finite difference code. 
One distinct feature of this calculation is the penetration of an air stream 
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(heavy fluid) into the hydrogen (light fluid) causing instability that exhibit 
a mushroom shape structure (See Appendix A). This study can be used to 
guided researcher in develop fuel jet configuration for the scramjet engine 
with greater confident. Our goal in this research is to extend this problem to 
a three dimensional steady and/or unsteady simulation with full chemistry 
model. 

A detailed report [19] describes the codes in detail. 

12 



5. Shock interacting with vortices 

In designing supersonic scramjet engine nozzle, acoustic radiation pat- 
tern (sound wave) will be generated by the interaction of shock and vortices 
according to the linear analysis done by Ribner and Moore . The sound wave 
will have a significant impact on the design of engine that operated at super- 
critical nozzle pressure ratios. Moreover, sound wave (noise) generated by 
supersonic aircraft should be minimized for environmental reason, as it travel 
over populated land mass. Hence, a better understanding of the mechanism 
of the shock vortices interaction is important. 

The vortex is defined as follow : the tangential velocity profile of the 
vortex centered at (xc,yc) in the polar coordinate is 

U(r) 
Tr(rö2 - rf2)   0 < r < r0 < rx 

Tr(r~2 — rf2)   r0 < r < r\ 
0 r > rx 

where r0 = 0.2 and r1 = 1.0 unless specified otherwise. This vortex is rotating 
in a counter-clockwise direction. Hence, the velocity field upstream of the 
shock becomes 

u   =   uT — U(r) sin 6 

v   =   vr + U(r) cos 6 

where 0 = tan"1 f^^). 
\X—XCJ 

We used Chebyshev collocation methods to solve the two dimensional 
Euler gas dynamics equation [14]. Using some standard numerical techniques, 
the spectral code remains stable and highly efficient, we can computed the 
solution in less than 10 CPU minutes on a Cray 2 supercomputer with grid 
size up to 256x256 Chebyshev collocation points. As a test case, a mach 3 
shock was propagated through air and impacted with a vortex of strength 
F = 0.25. After reconstruction of the raw data, we are able to recover the 
solution that depicted strong acoustic wave propagated downstream with 
good accuracy when compared with ENO third order scheme. 

13 



6. Compressible wake flows 

We are interested here in numerical simulation of a low Mach num- 
ber, compressible, viscous flow past a circular cylinder at a moderately low 
Reynolds number. The unsteady wake generated by the cylinder has been 
of great interest to computational fluid dynamicisits as well as to theoretical 
and experimental aerodynamicits. The Reynolds number range between 40 
and 1000 has been of particular interest because it spans the transition from 
steady flow to an unsteady wake flow dominated by the period shedding of 
vortices from the cylinder. The shedding frequency of this vortices is known 
theoretically and all numerical methods, applied to this problem, obtain this 
frequency within reasonable accuracy. However, Srinivassan measured (in 
a wind tunnel experiment) more than one distinct frequency in the shed- 
ding regime. In addition to the vortex shedding frequency he found clearly, 
discernible lower frequencies and concluded that this was a feature of the 
initial stage of transition to turbulence. A numerical simulation, using the 
second order accurate MacCormack scheme did find a secondary frequency, 
very nearly the same found in the wind-tunnel experiment. 

We have developed at Brown the most accurate code for this configura- 
tion. The code simulates the axial-symmetric time dependent , compressible 
viscous Navier-Stokes equations. It uses Fourier methods in the 6 direction 
and Chebyshev methods in the radial direction. This code found no sec- 
ondary frequencies. Spectral methods are , of course, methods with high 
order accuracy, and as any other high order method, are very sensitive to the 
kind of outflow boundary conditions treatment. In particular they tolerate 
only those treatments based on the characteristic variables. Low order meth- 
ods are more tolerant and allow high variety of boundary conditions. When 
the far field boundary conditions from the spectral code, were incorporated 
into the second order code, the secondary frequency disappeared. The spuri- 
ous frequency was generated by a boundary condition that was tolerated by 
the low order (and robust) MacCormack scheme but not by the high order 
scheme used. It is interesting to note that when the wind tunnel experiment 
was repeated in a bigger wind tunnel where effect from the walls were elimi- 
nated, the secondary frequency disappeared. The above example illustrates 
the type of surprises one might encounter when using low order schemes for 
long time integrations. Stability, in the classical sense of Lax , is not enough 
anymore, one has to be careful not to have spurious phenomena. It also illus- 
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trates the fact that the gross features of the flow (in this case the shedding 
frequency) were obtained even with low order schemes. It is only when some 
delicate features of the flow were sought for that an unphysical solution had 
been observed. The fact that the lower order scheme produced a spurious 
solution does not contradict the fact that the scheme is stable and converges 
as the number of grid-points increases. The spurious solution will eventually 
disappear if further grid refinements will be carried out. However for real- 
istic grids it is impossible to distinguish between a physical and a spurious 
solutions, a high order scheme is less likely to produce a spurious solution. 
With this in mind we further investigated delicate physical questions. 

The effect of heating of the cylinder on the shedding. 
This is a fundamental question and there are only few wind tunnel exper- 

iments (done by Srinivassan) to indicate the possible effects on the shedding. 
The interaction of acoustic waves with the flow and its effect on 

the shedding. 
A compact 4-th order and sixth order finite difference scheme has also 

been incorporated into the spectral code. (See for a description of the code 
in [20] A detailed analysis of the effects of the heating of the cylinder on 
the shedding frequency had been studied using the above schemes. It has 
been found that the shedding frequency decreases when the wire was heated. 
Experimental work carried out at NASA Langley confirmed the numerical 
results. 

We have also applied spectral multidomain techniques to the same geom- 
etry ([30]) in order to be able to port the code easily to parallel computers. 

We are now in the process of studying interactions of acoustic waves and 
heated cylinders. The physical problem is of great interest to experimentalist 
that have to calibrate their wind tunnel experiments. Since the probes are 
heated cylinders, the effect of the acoustic waves on them has to be taken 
into account. 

15 



7. The efficient implementation of spectral and high order schemes 

High order finite difference methods were considered as an alternative to 
Spectral methods. In [5] a series of compact fourth- and sixth-order schemes 
were developed and their stability for mixed initial-boundary value problems 
had been verified using the GKS theory. In [6] The problem of time stability 
was also addressed and fourth order schemes that satisfy evergy norm were 
constructed. In [7] we had pointed out that time stability for system does 
not follow from scalar time stability and presented a systematic way for 
constructing boundary conditions for compact (and spectral) schemes. This 
is the first work that the issue of time stability for systems has been addressed. 

In [7] we have shown that the conventional method of imposing time 
dependent boundary conditions for Runge-Kutte time advancement reduces 
the formal accuracy of the space time method to second order. This counter 
intuitive result was analyzed and a remedy was given for linear problems. A 
partial remedy had been given for some nonlinear problems in [37] and [1].. 

A step between the theory and the applications is the issue of efficient im- 
plementation of the theory. Progress had been made in different directions. 
In [18] the authors studied a new method in reducing the roundoff error in 
the computations of derivatives by Chebyshev methods. In [17] mappings 
were considered for Legendre methods. In [15] we constructed a new collo- 
cation method that uses Chebyshev points, convenient for the applications, 
but still has all the theoretical advanatges of the Legendre methods. In 
[31] we presented a time stable open boundary conditions for the numerical 
approximation of the Compressible Navier-Stokes equations in 3-D and dis- 
cussed their implementation within spectral and high order finite difference 
methods. 
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8. Multiscale Computing 

Many relevant physical phenomena involve infinite number of scales. In 
nonlinear problems it is desirable to find a way to take into account the effect 
of the scales which are neglected on those which are taken into account. 

Two approaches have been investigated for this type of problems: Non- 
linear Galerkin Methods and Wavelet based Schemes. 

In [29] we have studied the implementation of the Nonlinear Galerkin in 
the context of collocation discretizations. We have found interesting charac- 
terizations, in the physical space, of a small scale function and a large scale 
function. 

In [13] we presented an efficient pseudospecral NLG scheme for the peri- 
odic Burgers equation, The case of Chebyshev approximations to nonperiodic 
problems, in which the concept of large and small scales have to be redefined 
is currently under investigation. 

In a thesis by L. Jameson and in a subsequent paper [32]. the Daubechies 
wavelet based differentiation matrix was constructed. The relationship be- 
tween this matrix and finite difference methods was clarified. This serves 
as a basis for current work by Bruce Bauer a doctoral student on wavelet 
optimized finite difference methods. 

Jameson [33] also analyzed the differentiation matrix based on the com- 
pactly supported Daubechies wavelets. He showed that in this case there is 
a loss of the superconvergence. The same result holds (see [24]) for the finite 
element schemes. 
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Appendix A 

1     Introduction 

This research involves study of combustion and mixing induced by the interaction of a shock 
in air with a hydrogen jets. This model problem is of interest for the design of air-breathing 
scramjet engines, as it provides a mechanism for inducing millisecond combustion times. 
Extremely rapid combustion is a necessity in an engine where the reactants are escaping 
from the reaction chamber at supersonic speeds. 

In a pre-mixed combustion process, the combustion rate is limited by the rate at which 
reactants diffuse across the air-fuel interface. This diffusion rate is determined by the length 
of the interface and the concentration gradient across it. One way to increase this rate of 
diffusion is to stretch out the interface by the motion induced from a point vortex [2]. At 
the same time this would steepen the concentration gradient across the interface by bringing 
fresh reactants into contact with it. Marble [3] suggests a way to induce this vorticity—to 
have a shock pass though a jet of fuel nearly perpendicular to its axis. While passing through 
the region of inhomogeneous density the shock will produce vorticity via the px

2 
p term in 

the vorticity equation: 

dw      ,      „Wr        „   T,     VpxS/p 
— = (u, - V)V - uV ■ V + 9      - 
at /r 

The gradient in pressure across the shock in conjunction with gradient in fluid density 
between the air and hydrogen produce a large increase in vorticity as the shock passes 
through the hydrogen jet. 

Another factor affecting mixing in this model system is the fluid instability produced as 
the denser air and lighter hydrogen are accelerated by the shock passing through. This is 
a similar situation to a heavy fluid lying above a lighter one in a gravitational acceleration. 
The heavier fluid tends to form fingers descending down into the lighter fluid below, due 
to the Rayleigh-Taylor instability. A similar instability, the shock-induced Rayleigh-Taylor 
instability or Richtmyer-Meschkov instability, results in a similar fingering of air into the 
hydrogen cylinder as the shock passes through. 

For this type of problem, it is important to capture the complex physics with high 
accuracy. Accurate calculations in search of quantitative information about the mixing 
require high resolution and/or high order schemes. Previous researchers failed to capture 
many important features of this flow due to the 

• inability of their codes to adequately resolve features in the flow [4] [5] [6]. 

• inherently dissipative nature of the finite difference scheme (F'CT [1, 5], for example), 
which ensured that the computed results were only qualitatively accurate. Often, for 
long time integration, the loss of accuracy in earlier stages inhibited the development 
of fine scale features at later times. 
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According to Marble et al., the 3-D steady shock and profile can be simulated by a 2-D 
unsteady shock provided several conditions can be met. To make any direct association of 
the 2-D unsteady flow with the 3-D steady flow in such a geometry, it is required that 

• Pressure and Density jumps are matched across the shock. 

• The velocity of the feature (dx/dt\2o) in 2-D should be related to the corresponding 

slope (dz/dxlzo) in 3-D linearly 

1 dx dz 
--77 2D = ™.—-|3D, 
r (it dx 

where m is a conversion factor and c is the sound speed. 

• To be consistent with the pressure and density jump across the shock, the motion of 
the shock should be matched as well, hence, 

M2D = mtan(j0 - 8). 

where ß is determined by the knowing M^D and the turning angle 8. 

Once the conversion factor m is found for a given M3D,M2JD,^, one can compare the 2-D 
trajectory of the center of mass fraction from the numerical simulation with the 3-D jet lift- 
off. They find a good agreement for M3D = 6,5 = tan-1^/^) and M2D = 1.346, m = 9.34. 
This good agreement indicates that the trajectory of the feature in 2-D corresponds well 
with the 3-D steady case with the matching of geometry and shock condition. 

We solved the two dimensional compressible Navier Stokes equations with three addi- 
tional equations for the conservation of mass of species in order to take into account of the 
production of species by the combustion process. A single step reversible chemistry reaction 
model, namely, 2H2 + 02 <=> 2H20 is used. The Soret and Dufour effect, heat radiant 
effect, pressure gradient diffusion and body force are neglected. The binary coefficient of all 
species is assumed to be equal and Lewis number Le = 1. The mixture viscosity is deter- 
mined from the Wilke's law. The forward reaction rate of the reaction is given by a modified 
Arrhenius law. 

Two different numerical schemes are used, namely, a spectral scheme [8] and the ENO 
schemes of Shu and Osher [7]. We begin first by discussing the spectral code in next section. 

2     Spectral code 

6 

• 

The physical domain of the model is x (E [0 cm,, 12.5 cm].y G [—6.5 cm,6.5 cm]. The 
symmetry property of the flow is used for the single jet configuration. This would 
improve the efficiency for these cases. 

Initially, a Mach 2 normal air shock located at x = 5 cm and a hydrogen jet of pa 2 cm 
in radius is centered at x = 2.75 cm.y = 0 cm. The initial temperature of the jet is at 
1000 °K at 1 atm. 
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• Chebyshev collocation methods is used in both x and y directions. 

• The Chebyshev collocation points £ is mapped into another set of interpolation points 
x by a grid transformation (Kosloff, Tal-Ezer) in the form of 

sin-yo 
sin    (a) 

For a = sech((lne)/N) and £,• = cos(nj/N). where e is the machine zero. CFL number 
larger than the standard Chebyshev methods would allow can be taken. For N = 512, 
CFL can be 15 times larger using the x((j) as the interpolation points without any 
degradation in approximation accuracy. 

• Differentiation of the three dimensional data set (n,ra,&) is done by applying Cosine 
Transform-Recursion-Inverse Cosine Transform on the Cray C90. n, m are the number 
of points in x and y, respectively, k is the number of PDE. Typically, n — m = 512 
and k = 7. 

• Boundary Condition : 
In the y direction, a reflective boundary condition is used at y = ±6.5 cm. Supersonic 
inflow is imposed on the inflow. At the outflow, characteristic treatment based on the 
eigenfunctions and eigenvalues of the one dimensional Euler equation is used. 

• A low storage third order TVD stable Runge-Kutta scheme (Shu, Osher) is used to 
march the equations in time. It has the form of 

Wl   =   Wn - AtL(Wn) 

W2   =   -(S^ + W1 -AtLiW1) 

Wn+1   =   Uwn + 2W2 -2AtL(W2) 

where L is the spatial operator for the fluxes. 

• At each Runge Kutta time step, the derivative and the solution are filtered by the 
exponential filter, 

cr(k) = e-aW\     A; = 0,1,..., AT 

where a = — In e and e is the machine zero. Typically, 7 = 14 for the smoothing of the 
derivative of the fluxes and 7 = 12 for the smoothing of the solution. 

It is mainly used for the purpose of stabilizing the spectral scheme from Gibbs phe- 
nomenon and nonlinear instability. 

• Gibbs free reconstruction of the data has not yet been implemented in a satisfactory 
wav. Further research is needed. 
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• At some stage of evolution of the PDE, 1) Gibbs phenomena and/or small scale oscilla- 
tion in the jets caused negative hydrogen mass fraction, 2) compression of the jets and 
lack of strong numerical dissipation cause unrealistic local large gradients in species 
mass fraction. The Global nature of the strong smoothing has the undesirable effect 
of destroying information in regions other than those few local unstable ones. To deal 
with kind of situation, points that exceed a certain tolerance level are smoothed locally 
by nine point averaging. The tolerance is set by limiting the hydrogen mass fraction 
to not exceed one percent of one below zero. One important point to remember is 
that the local smoothing is done on the primitive valuables, not on the conservative 
valuables (does not seem to work well). 

2.1     Implementation of the spectral code 

• The Spectral code is implemented on the Cray C90 at WES High Performance Com- 
puting (HPC) Center. 

• The code has about 88% of DO loop vectorized. 

• The code make used of the multiple fast Fourier Transform routine in the Cray Scientific 
library to perform the main computational kernel, namely, the differentiation of the 
fluxes and smoothing of the solution. 

• The computational kernel of the algorithm achieves performance of 550 megaflop on a 
single processor with 512 x 512 grids. 

• Total CPU time usage for the 512 x 512 grids and final phvsical time T = 80 microsec- 
ond is about 4| CPU hours. Average CPU for each time step is about 3.8 seconds. 
Total number of time step is about 4127. 

3     ENO code 

• Geometry same as spectral, except y € [0 on, 5 cm], using the symmetry property of 
*~he flow. 

• ENO scheme applied to a regular grid with mappings applied to each coordinate di- 
rection separately, uniform grid on x, ta.n(ßx)/c in y, where c is a constant. 

• Boundary Conditions : 
Reflective boundary conditions at y = 0 cm and 5 cm. Characteristic boundary con- 
ditions at inflow and outflow. 

• The same 3rd order TVD Runge-Kutta applied in the spectral scheme is used to 
advance in time, using the method of lines. 

• Each chemical species is treated as a separate conservative variable in the numerical 
formulation. Negative species concentrations are treated by clipping values. 
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• The hyperbolic system is approximately diagonalized locally in order to decouple the 
system of equations in the ENO derivative. The computed Jacobian matrix includes 
contributions due to the chemical species, but the dependence of pressure on species 
mass fraction is ignored. 

• Local Lax-Friedrich flux-splitting applied for upwinding. 

• Viscosity is computed by central differences. If s is the shu style order of the scheme, 
up to 2*(s+l) order—user chooses. 

3.1     ENO Implementation 

• The ENO code is implemented on the Thinking Machines CM5 at the Army High 
Performance Computing Research Center. 

• Code implemented using the CMMD message passing library, the CDPEAC assembly 
language and GCC-AC vector C code. 

• The algorithm achieves in excess of 1 Gflop on a 32 node machine for 300 x 300 grids. 
On a 512 node machine, the code achieves in excess of 16 Gfiops. 

• CPU time usage for 10000 time steps for a 1472 x 736 grid is about 3 hours for a 
512 node machine. 11029 time steps took 10243 seconds (or 2.84 hours). It took 1.58 
gigabytes of memory, total. 

4     Numerical Results 

Here we would like to study the resolution properties of the ENO scheme and the spectral 
scheme for supersonic reactive flows. It is important that the flame front (a narrow region 
where the combustion take place) to be well resolved. The physical aspect of this problem 
will be study in some later time. Hence, to simplify the number of PDE to be solved, we 
solved the Euler equation without combustion. (ENO version of the full combustion model is 
under development. The spectral version of the full combustion model is ready and running.) 

The 2D supersonic reactive flow is modeled by a Mach 2 normal air shock moving toward 
right side of the domain and interacted with a column of hydrogen jet as depicted in figure 
1. (Solution for multiple hydrogen jets configuration is also available). 

The hydrogen mass fraction of the second order ENO scheme (Shu's definition) with grid 
size 240 x 120, and 1472 x 736 are shown in figures 2 and 3 respectively, at t = 60 microsecond. 
The corresponding solution from the spectral code with grid size 512 x 512 is shown in figure 
5. The global structure (for example, density) of the two algorithms is very similar. The fine 
structures (for example, the flame front), however, was not captured in the low resolution 
version of the ENO scheme. In most literature, this is the solution that other researches 
(FCT, ENO) had obtained. As the resolution of the ENO scheme increased, it then able 
to capture the finer structure inside the hydrogen jet.  Still, the strong inherent numerical 
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dissipation of the scheme prevented further development of some finer structures in later 
time. The spectral solution, however, shows a great deal more structures. More noticeably 
is the mushroom shape structure which is a tell-tale sign of Rayleigh-Taylor instability. 

A third order ENO scheme was developed with mapping to cluster points near the jet. 
The hydrogen mass fraction now indicate a completely new configuration inside the hydrogen 
jet than the low resolution case (figure 5). A mushroom shape structure is now emerged from 
where the air penetrating the hydrogen (A Rayleigh-Taylor instability). The important of 
high-order/high resolution scheme in resolving the combustion front is evident from this 

studv. 
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